VLF Waves in the Foreshock

R. J. Strangeway* and G. W. Crawford**

*Institute of Geophysics and Planetary Physics,
University of California at Los Angeles

**Radio Atmosphere Science Center
Kyoto University at Kyoko 611, Japan
Now at SRI International, Menlo Park, California 94025, U. S. A.


Adv. Space Res., vol 15, (8/9)29-(8/9)42, 1995
Copyright 1995 by COSPAR


Next: Figure Captions
Previous: Summary and Conclusions
Top: Title and Abstract


References

1. Klimas, A. J., The Electron Foreshock, in Collisionless Shocks in the Heliosphere: Reviews
      of Current Research
(eds. B. T. Tsurutani, and R. G. Stone), pp. 237-252, Geophysical
      Monograph 35, American Geophysical Union, Washington, 1985.

2. Fitzenreiter, R. J., The electron foreshock, Adv. Space Res., this issue.

3. Scudder, J. D., A review of the cause of electron temperature increase in collisionless
      shocks, Adv. Space Res., this issue.

4. Forman, M. A., and G. M. Webb, Acceleration of energetic particles, in Collisionless
      Shocks in the Heliosphere: A Tutorial Review
(eds. R. G. Stone, and B. T. Tsurutani),
      pp. 91-114, Geophysical Monograph 34, American Geophysical Union, Washington,
      1985.

5. Armstrong, T. P., M. A. Pesses, and R. B. Decker, Shock drift acceleration, in Collisionless
      Shocks in the Heliosphere: Reviews of Current Research
(eds. B. T. Tsurutani, and R.
      G. Stone), pp. 271-285, Geophysical Monograph 35, American Geophysical Union,
      Washington, 1985.

6. Gosling, J. T., and A. E. Robson, Ion reflection, gyration, and dissipation at supercritical
      shocks, in Collisionless Shocks in the Heliosphere: Reviews of Current Research (eds.
      B. T. Tsurutani, and R. G.Stone), pp. 141-151, Geophysical Monograph 35, American
      Geophysical Union, Washington, 1985.

7. Thomsen, M. F., Upstream suprathermal ions, in Collisionless Shocks in the Heliosphere:
      Reviews of Current Research
(eds. B. T. Tsurutani, and R. G. Stone), pp. 253-270,
      Geophysical Monograph 35, American Geophysical Union, Washington, 1985.

8. Greenstadt, E. W., G. Le, and R. J. Strangeway, ULF waves in the foreshock, Adv.
      Space Res.,
this issue.

9. Fuselier, S. A., Ion distributions in the Earth's foreshock upstream from the bow shock,
      Adv. Space Res.,this issue.

10. Scholer, M., Interaction of upstream diffuse ions with the solar wind, Adv. Space Res.,this
      issue.

11. de Hoffman, F., and E. Teller, Magneto-hydrodynamic shock, Phys. Rev., 8O, 692 (1950).

12. Goodrich, C. C., and J. D. Scudder, The adiabatic energy change of plasma electrons and
      the frame dependence of the cross-shock potential at collisionless magnetosonic shock
      waves, J. Geophys. Res., 89, 6654-6662 (1984).

13. Scudder, J. D., A. Mangeney, C. Lacombe, C. C. Harvey, and T. L. Aggson, The resolved
      layer of a collisionless, high b, supercritical, quasi-perpendicular shock wave 2.
      Dissipative fluid electrodynamics, J. Geophys. Res., 91, 11,053-11,073 (1986).

14. Ellison, D. C., and Jones, E. C., Non-coplanarity magnetic fields in shock transition layers,
      Adv. Space Res., this issue.

15. Leroy, M. M. and A. Mangeney, A theory of energization of solar wind electrons by the
      Earth's bow shock, Annales Geophysicae, 2, 449-56 (1984).

16. Wu, C. S., A fast Fermi process: Energetic electrons accelerated by a nearly perpendicular
      bow shock, J. Geophys. Res., 89, 8857-8862 (1984).

17. Filbert, P. C., and P. J. Kellogg, Electrostatic noise at the plasma frequency beyond the
      Earth's bow shock, J. Geophys. Res., 84, 1369 (1979).

18. Fitzenreiter, R. J., J. D. Scudder, and A. J. Klimas, Three-dimensional analytical model for
      the spatial variation of the foreshock electron distribution function: Systematics and
      comparisons with ISEE observations, J. Geophys. Res., 95, 4155-4173 (1990).

19. Greenstadt, E. W., and L. W. Baum, Earth's compressional foreshock boundary revisited:
      Observations by the ISEE 1 magnetometer, J. Geophys. Res., 91, 9001-9006 (1986).

20. Crawford, G. K., A Study of Plasma Waves Arising from the Solar Wind Interaction with
      Venus,
Ph. D. Thesis, University of California at Los Angeles, 1993.

21. Crawford, G. K., R. J. Strangeway, and C. T. Russell, VLF emissions in the Venus
      foreshock: Comparisons with terrestrial observations, J. Geophys. Res., 98, 15,
      305-15,317 (1993).

22. Scarf, F. L., W. W. L. Taylor, and P. V. Virobik, The Pioneer Venus Orbiter plasma wave
      investigation, IEEE Trans. Geosci. Remote Sens., GE-18, 36-38 (1980).

23. Scarf, F. L., W. W. L. Taylor, C. T. Russell, and R. C. Elphic, Pioneer Venus plasma wave
      observations: The solar wind-Venus interaction, J. Geophys. Res., 85, 7599-7612
      (1980).

24. Strangeway, R. J., Plasma waves at Venus, Space Sci. Rev., 55, 275-316 (1991).

25. Higuchi, T., G. K. Crawford, R. J. Strangeway, and C. T. Russell, Separation of spin
      synchronous signals, Annals of the Institute of Statistical Mathematics 46, 405-428,
      1994.

26. Crawford, G. K., R. J. Strangeway, and C. T. Russell, Electron plasma oscillations in the
      Venus foreshock, Geophys. Res. Lett., 17, 1805-1808 (1990).

27. Anderson, R. R., G. K Parks, T. E. Eastman, D. A. Gurnett, and L. A. Frank, Plasma
      waves associated with energetic particles streaming upstream into the solar wind from
      the Earth's bow shock, J. Geophys. Res., 86, 4493-4510 (1981).

28. Fuselier, S,. A., and D. A. Gurnett, Short wavelength ion waves upstream of the Earth's
      bow shock, J. Geophys. Res., 89, 91-103 (1984).

29. Crawford, G. K., R. J. Strangeway, and C. T. Russell, VLF imaging of the Venus foreshock,
      Geophys. Res. Lett., 20, 2801-2804 (1993).

30. Slavin, J. A., R. E. Holzer, J. R. Spreiter, and S. S. Stahara, Planetary Mach cones: Theory
      and observation, J. Geophys. Res., 89, 2708-2714 (1984).

31. Farris, M. H., and C. T. Russell, Determining the standoff distance of the bow shock: Mach
      number dependence and use of models, J. Geophys. Res, 99, 17,681-17,689 (1994).

32. Greenstadt, E. W., G. K. Crawford, R. J. Strangeway, S. L. Moses, and F. V. Coroniti,
      Spatial distribution of electron plasma oscillations in the Earth's foreshock at ISEE-3,
      in preparation, personal communication, 1994.

33. Le, G., and C. T. Russell, A study of ULF wave foreshock morphology-1: ULF foreshock
      boundary, Planet Space Sci., 40, 1203-1213 (1992).

34. Etcheto, J., and M. Faucheux, Detailed study of electron plasma waves upstream of the
      Earth's bow shock, J. Geophys. Res., 89, 6631-6653 (1984).

35. Fuselier, S. A., D. A. Gurnett, and R. J. Fitzenreiter, The downshift of electron plasma
      oscillations in the electron foreshock region, J. Geophys. Res., 90, 3935-3946 (1985).

36. Hospodarsky, G. B., D. A. Gurnett, W. S. Kurth, M. G. Kivelson, R. J. Strangeway, and S.
      J. Bolton, Fine structure of Langmuir waves observed upstream of the bow shock at
      Venus, J. Geophys. Res., 99, 13,363-13,371 (1994).

37. Cairns, I. H., C. W. Smith, W. S. Kurth, D. A. Gurnett, and S. Moses, Remote sensing of
      Neptune's bow shock: Evidence for large scale shock motions, J. Geophys. Res., 96,19,
      153-19,169 (1991).

38. Skalsky, A., R. Grard, S. Klimov, C. M. C. Nairn, J. G. Trotignon, and K. Schwingenschuh,
      The Martian bow shock: Wave observations in the upstream region, J. Geophys. Res., 97,
      2927-2933 (1992).

39. Trotignon, J. G., A. Skalsky, R. Grard, C. Nairn, and S. Klimov, Electron density in the
      Martian foreshock as a by-product of the electron plasma oscillation observations, J.
      Geophys. Res., 97,
10,831-10,840 (1992).

40. Fuselier, S. A., S. P. Gary, M. F. Thomsen, S. J. Bame, and D. A. Gurnett, Ion beams and
      the ion/ion acoustic instability upstream from the Earth's bow shock, J. Geophys. Res.,
      92
, 4740-4744 (1987).


Next: Figure Captions
Previous: Summary and Conclusions
Top: Title and Abstract


Go to R. J. Strangeway's Homepage

Converted to HTML by Shaharoh Bolling
Last Updated: Feb. 16, 2000