Title
(-- inline gif image --)

Introduction
(-- inline gif image --)

Heat Budget Equations
(-- inline gif image --)

Figure - Collision Frequencies
(-- inline gif image --)

Wave Attenuation - Order of Magnitude Estimates
(-- inline gif image --)

Figure - Dayside Ionopause - Heating Estimates
(-- inline gif image --)

Figure - Nightside Ionosphere - Heating Estimates
(-- inline gif image --)

Wave Attenuation - Detailed Calculations
(-- inline gif image --)

Figure - 100 Hz, Weak Attenuation - Ionospheric Characteristics
(-- inline gif image --)

Figure - 100 Hz, Weak Attenuation - Wave Parameters and Heat Budget
(-- inline gif image --)

Figure - 100 Hz, Moderate Attenuation - Ionospheric Characteristics
(-- inline gif image --)

Figure - 100 Hz, Moderate Attenuation - Wave Parameters and Heat Budget
(-- inline gif image --)

Figure - 100 Hz, Strong Attenuation - Ionospheric Characteristics
(-- inline gif image --)

Figure - 100 Hz, Strong Attenuation - Wave Parameters and Heat Budget
(-- inline gif image --)

Conclusions
(-- inline gif image --)

Addendum

Through conversations with Walt Hoegy, Tom Cravens, and Jane Fox at the Fall AGU Meeting, it has become clear that the neutral atmosphere can cool electrons very efficiently. In our calculations we neglected any cooling due to inelastic collisions (e.g., vibrational and rotational excitation of neutrals). The cooling due to inelastic processes can be quite large, perhaps sufficient to further reduce the temperature enhancements required to balance the Joule dissipation. The temperatures may be even lower than shown in this poster. We are currently revising our calculations to include inelastic cooling.


IGPP/SSC home page     Pioneer Venus Orbiter OMAG/OEFD home page     Bob Strangeway's home page

created by R. J. Strangeway, with lots of help and guidance from Muriel Kniffin.

email: strange@igpp.ucla.edu

Last modified: February 3rd, 1995.