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On the transition from collisionless to collisional
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Abstract.   Magnetosphere-ionosphere coupling entails the interaction of two quite different
plasmas. The magnetosphere is to a large extent a collisionless magnetohydrodynamic (MHD)
fluid, while the ionosphere is strongly collisional. As such the relationship between the electric
currents and electric field appear to be fundamentally different in the two regimes. For the magne-
tosphere the currents are determined by the forces within the plasma, while in the ionosphere the
current and electric field are related through an anisotropic Ohm’s law. Here we explore the
transition between these two regimes and show that there is a clear ordering of the governing
equations, with a single “collisional Ohm’s law” that contains both the collision-frequency-
dependent Pedersen and Hall conductivities and collisionless MHD terms, without making any
prior assumptions concerning the ordering of the collision frequencies. The generalized Ohm’s
law of MHD is also present, but this equation reduces to the statement that within the ionosphere
the magnetic field is “frozen” to the electron fluid, unless electron collision frequencies become
comparable to the electron gyrofrequency. It is the freezing-in of the electron fluid that leads to
the direct equivalence of mechanical and electromagnetic loads. This equivalence of loads also
indicates that Poynting flux traveling upward out of the ionosphere can only occur if there is a
convergence of horizontal Poynting flux in excess of the ionospheric Joule dissipation.

1.  Introduction

An important question for the Earth’s magnetosphere concerns
the interplay between the magnetosphere and ionosphere. This
magnetosphere-ionosphere coupling involves both electro-
magnetic and mechanical coupling. Electromagnetic coupling
addresses the generation and dissipation of electric currents,
while the mechanical coupling addresses how the magnetosphere
imposes its flow patterns onto the ionosphere, which is subject to
frictional drag through collisions with the neutral atmosphere. As
a general rule, there is thought to be a strong equivalence between
the two types of coupling, with the magnetosphere usually acting
as a source of both mechanical and electromagnetic energy for the
ionosphere. Occasionally, the ionosphere can drive the
magnetosphere, by neutral winds, for example [Deng et al. ,
1991] , but in this case the ionosphere is both a mechanical driver
and an electromagnetic generator.

In several instances, however, it appears that the ionosphere
could drive the magnetosphere. A classic example is given by
Siscoe  [1982], who discusses the change in the region 2 current
system following an increase in the applied potential of the region
1 system. He assumes that the two current systems are only
connected through ionospheric Pederson currents, and con-
sequently, “energy is transferred from the region 1 to the region 2
Birkeland current system via, effectively, an ionospheric battery”
[Siscoe, 1982, p. 5126].

High-latitude radar and magnetometer observations also indi-
cate that the polar cap convection changes quickly over the entire
polar cap following a change in the interplanetary magnetic field
(IMF). This has been argued as evidence that the “ionospheric
electric field controls tail dynamics” [ Ridley et al. , 1999, p. 4396;
Lockwood and Cowley, 1999].

More recently, Song et al. [1999, 2000] found a region 1 sense
current system deep within the magnetosphere for northward IMF
using a global magnetohydrodynamic (MHD) simulation with a
conducting ionosphere. They argued that this current system cor-
responded to the ionosphere acting as a mechanical driver of
magnetospheric convection while simultaneously acting as an
electromagnetic load.

All these examples appear to contradict the assertion that there
is a direct equivalence between electromagnetic and mechanical
loads. Our purpose here is therefore twofold. First, we wish to
verify that the transition from the ideal MHD regime to the col-
lisional regime is smooth. P. Song (personal communication,
2000) has suggested that the breakdown in equivalence of loads
may occur because the magnetosphere and ionosphere are not
governed by the same set of equations. The magnetosphere is
generally thought to be governed by ideal MHD, although clearly
MHD breaks down in certain regions, such as where reconnection
is occurring, or where parallel electric fields are present. The
ionosphere, on the other hand, is strongly collisional, and the cur-
rent and electric field are directly related through an Ohm’s law
that includes Pedersen, Hall, and parallel conductivities. Intuition
suggests that the transition is smooth, but there is always the dan-
ger of making assumptions concerning the ordering of terms, only
to find that two assumed large terms cancel, while a smaller term
which should be present had been dropped earlier.

Second, having verified that the transition from ideal MHD to
strongly collisional MHD is indeed well ordered, we wish to
elucidate the circumstances under which the ionosphere may
appear to drive the magnetosphere. At its simplest, we will argue
that this reduces to determining if Poynting flux flows into or out
of the ionosphere.
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While this could be viewed as a largely pedagogical exercise,
fundamental insights into magnetosphere-ionosphere coupling are
possible. In particular, the principle of “frozen-in” flow, generally
thought to apply in the MHD regime, also applies for the
ionosphere, provided it is realized that the magnetic field is
frozen to the electron fluid, not the ion fluid. (An aside may be in
order here: one often reads of “frozen-in electrons,” and we shall
use the same phrase here, but it should be remembered that it is
the magnetic field that is frozen to the electron fluid.) We empha-
size that the concept of frozen-in electrons is well known.
Scudder et al.  [1999], for example, discuss the generalized Walén
relation for the electron fluid. Our discussion here is another case
where the magnetic field convects with the electron fluid rather
than the ion fluid. It is this freezing-in with respect to the electron
fluid that results in the equivalence of mechanical and electro-
magnetic loads and that also allows us to discuss the flow of
magnetic energy through Poynting flux.

In the next section we will present the derivation of collisional
MHD in a frame defined by the neutral atmosphere, showing that
with a suitable gathering of terms the equations can be made
compact, allowing for the ordering of the terms to be easily veri-
fied without making any prior assumptions. We are using the
appellation “collisional MHD” since we are still using fluid
equations. In addition, we are mainly concerned with the momen-
tum equations of MHD, not the higher order moments, such as
the energy equation. The third section will briefly discuss the
extension of the formalism to other frames of reference, as well as
the inclusion of additional forces and anomalous collisions. In the
fourth section we will briefly reiterate the point that the order ing
of the terms in collisional MHD holds no surprises. We will also
make the point that in collisional MHD there is an Ohm’s law that
relates the current to the electric field, which comes from a
combination of the ion and electron momentum equations. The
generalized Ohm’s law does not fulfill the role of relating the
current to the electric field even on including collisions, since it is
essentially the electron momentum equation, and therefore relates
the electron flow velocity to the electric field. Rather, it demon-
strates the freezing-in of the magnetic field with respect to the
electron fluid. The frozen-in condition for electrons allows us to
prove the direct equivalence between electromagnetic and
mechanical loads, even in the collisional regime. Concluding
remarks are given in the final section.

2.  Basic Derivation

In order to derive an MHD formalism that includes collisions
we shall assume that both electrons and ions can be treated as
fluids. As we allude to later, nonfluid processes, such as wave-
particle interactions could be included if the effects of such pro-
cesses can be parameterized in terms of fluid properties.

The electron momentum equation is

    
me

dUe
′

dt
= – e E′ + Ue

′ × B –
∇∇Pe

n – meνenUe
′ + meνei

j
ne , (1)

while for ions

    
mi

DUi
′

Dt = e E′ + Ui
′ × B –

∇∇Pi
n – miνinUi

′ – meνei
j

ne , (2)

with the following definitions

me electron mass;
mi ion mass;

  Ue
′ electron flow velocity with respect to

neutrals;
 Ui

′ ion flow velocity with respect to neutrals;
      d/dt = Ue

′ • ∇∇ + ∂/∂t ′ total time derivative operator for electron
fluid;

    D/Dt = Ui
′ • ∇∇ + ∂/∂t ′ total time derivative operator for ion fluid;

e magnitude of the electron charge;
E′ electric field in the frame of the neutrals;
B magnetic field;

Pe electron thermal pressure;
Pi ion thermal pressure;
n number density;

νen electron-neutral collision frequency;
νin ion-neutral collision frequency;
νei electron-ion (Coulomb) collision

frequency;
    j = ne(Ui

′ – Ue
′ ) current density

[e. g., Barakat and Schunk , 1982].
In writing these equations we have assumed that both species

have the same number density n  (i.e., space charge is ignored, as
in the MHD approximation). Furthermore, since momentum is
conserved for collisions between ions and electrons, m eνei =
miνie, where ν ie is the ion-electron collision frequency. We have
also used different total time derivative operators for each species
to allow for the possibility of large current densities, as occur
deep in the ionosphere where ion-neutral collisions strongly
retard the ion motion. We should also emphasize that the veloci-
ties and electric field are determined in the frame moving with the
neutrals, as indicated by being primed. Unprimed variables are
invariant under a Galilean transformation. The current density
and total time derivative operators are also frame invariant, even
though they have been defined in the frame of the neutrals.

It should be noted that we have ignored many of the issues
involved in obtaining the electron and ion momentum equations
in the form given above. In particular, we have reduced the colli-
sional terms to their simplest form, only involving first-order
velocity moments of the phase space distribution and velocity-
independent collision frequencies. Green [1959] , for example,
argues that this can only be done if there are no temperature gra-
dients or if thermoelectric effects are unimportant. Such a discus-
sion is well beyond the scope of this paper, but we expect any
corrections along these lines to be small.

To further simplify these equations, we will define several
force terms

    Fe = – ∇∇Pe – nme
dUe

′

dt
, (3)

    Fi = – ∇∇Pi – nmi
DUi

′

Dt , (4)

   F = Fe + Fi , (5)

and a modified electric field

    E′ = E′ –
Fe
ne –

meνei

ne2 j . (6)

The force terms defined above are also invariant under a
Galilean transformation, since the velocities in different frames
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differ by a constant. Furthermore, F e and Fi are strictly speaking
force densities (N/m3). We could as easily have defined them in
units of force, but it is the normal convention in MHD to use
force densities, even though they are referred to as forces (e.g.,
the “ j×B force”). We will use the same shorthand here. We only
need to remember the distinction when we wish to include addi-
tional forces. The force definitions include the rate of change of
momentum, which may be counterintuitive. On the one hand, the
spatial derivative can be interpreted as a gradient in the dynamic
pressure (plus vorticity terms), but on the other hand, we are
treating the time rate of change of momentum as a force.
Nevertheless, it is common to refer to inertial forces as generating
currents [e.g., Haerendel , 1990], and including the inertial terms
in Fe and F i is not a problem as long as it is remembered that
force balance requires the sum of all the forces as defined to equal
zero. The meaning of E′  will become clear on rewriting the
electron and ion momentum equations:

    meνenUe
′ = – e E′ + Ue

′ × B , (7)

    miνinUi
′ = e E′ + F

ne + Ui
′ × B . (8)

Equation (7) is a modified form of the generalized Ohm’s law
of MHD. When electron-neutral collisions are unimportant, we
have     E′ + Ue

′ × B = 0 , which on expanding the terms becomes

    –
me

e
dUe

′

dt
= E′ + Ui

′ × B –
j× B
ne

+
∇∇Pe

ne
–

meνei

ne2 j . (9)

This is the MHD generalized Ohm’s law, except for the modifi-
cation that we use – d   Ue

′ /dt, rather than (1/ne)∂ j/∂t. The latter is
often used in the classical generalized Ohm’s law because terms
quadratic in   Ue

′   are assumed to be small, and |∂  Ui
′ /∂t| <<

|∂   Ue
′ /∂t| because of the difference in masses [see, e.g., Boyd and

Sanderson , 1969]. Equation (9) has not yet made any such simpli -
fying (albeit reasonable) assumptions. We also note that, strictly
speaking, keeping only the ∂ j/∂t term breaks the Galilean invari -
ance of the generalized Ohm’s law.

On adding (7) and (8) we find

    n miνinUi
′ + meνenUe

′ = F + j× B . (10)

Equation (10) is the full momentum equation. The momentum
equation written in this form also shows why the definitions in (3)
– (6) were chosen. The force terms on the right-hand side have no
collision terms; in particular, it is important to remember that
there are no terms dependent on electron-ion collisions in (10),
although such collisional terms are included in the ion and
electron momentum equations separately (through the modified
electric field E′ ). This is of course a direct result of conservation
of momentum for such collisions. In the absence of collisions
with neutral particles, (10) becomes the standard MHD momen-
tum equation F  + j×B = 0.

The momentum equation (10) also shows a clear separation of
the force terms. The left-hand side shows the frictional drag
terms, while the first term on the right-hand side includes all the
nonelectromagnetic forces. The last term is of course the j×B
force. This is the force term through which the magnetic field can
do work on the plasma. We will return to this point in our
discussion.

One could proceed by using the modified generalized Ohm’s
law (7) and the momentum equation (10), using the definition of
current density to replace the electron bulk velocity. Instead, we
will solve for the perpendicular components of the species bulk
flow velocities separately.

    
Ue⊥

′ 1 + νen
2 Ωe

2νen
2 Ωe

2 =
E⊥

′ × B

B2 –
νen

Ωe

E⊥
′

B
, (11)

    
Ui⊥

′ 1 + νin
2 Ωi

2νin
2 Ωi

2 =
(E⊥

′ + F⊥ neF⊥ ne)× B

B2 +
νin

Ωi

(E⊥
′ + F⊥ neF⊥ ne)

B
, (12)

where Ω e  and Ωi are the electron and ion gyrofrequencies,
respectively (eB/me and eB/mi).

The classical definitions of ionospheric Pedersen and Hall
conductivities are [e. g., Luhmann, 1995]

   
σ p = ne

B
νen Ωeνen Ωe

1 + νen
2 Ωe

2νen
2 Ωe

2 +
νin Ωiνin Ωi

1 + νin
2 Ωi

2νin
2 Ωi

2 (13)

   
σh = ne

B
1

1 + νen
2 Ωe

2νen
2 Ωe

2 –
1

1 + νin
2 Ωi

2νin
2 Ωi

2 . (14)

Both σp  and σ h are positive quantities, although formally σh
could be negative. In general we expect νin/νen  ≈ v Ti /vTe, where
vTi  and v Te are ion and electron thermal velocities, and hence
νin/νen  ≈ (me/mi)1/2 , especially in the ionosphere where Te ≈ Ti .
Consequently, r = (ν en /Ωe)/(ν in/Ωi) ≈ (me/mi)1/2  within the iono-
sphere. At higher altitudes, electron temperatures may be higher
than ion temperatures, but generally r  << 1, and the first term in
parentheses on the right-hand side of (14) is always larger than
the second. Thus σh as defined is positive. (See also Kelley  [1989,
chap. 2]  for a discussion of the ordering of the collision
frequencies.) With these definitions of σp and σ h, (11) and (12)
give

    
j⊥ = σ pE⊥

′ – σh
E⊥

′ × B
B +

νin Ωiνin Ωi F⊥ BF⊥ B

1 + νin
2 Ωi

2νin
2 Ωi

2 +
F⊥ × B B2F⊥ × B B2

1 + νin
2 Ωi

2νin
2 Ωi

2 , (15)

which we shall refer to as the collisional MHD Ohm’s law.
For completeness, the parallel current density is obtained from

the difference of the parallel components of (7) and (8), divided
by meνen  and miνin, respectively,

   
j|| νen + νei 1 + r = ne2

me
E|| 1 + r –

Fe||
ne + r

Fi||
ne , (16)

where r  is as defined above. Note that we have expanded E′  in
(16), as this field includes j ||  through the Coulomb collision term.
Also, E ||  and hence j||  are of course frame invariant.

Again, noting that r ≈ (me/mi)1/2 , and neglecting terms of this
order,

   
j|| νen + νei = ne2

me
E|| –

Fe||
ne . (17)

The parallel collisional conductivity therefore depends on the
total electron collision frequency ν en  + νei. For vanishing colli -
sion frequencies, and assuming electron inertia terms can be
ignored, (17) gives the standard result    neE|| = – (∇∇Pe)|| , that is, a
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parallel electric field is maintained by electron thermal pressure
in the collisionless regime.

At this stage we shall concentrate on (15), since the perpen-
dicular currents are important for magnetosphere-ionosphere
coupling, although field-aligned currents clearly play a key role in
coupling the perpendicular currents in the magnetosphere and
ionosphere. It should also be noted that (17) generally requires
modification because of anomolous resistivity, where such
resistivity may be caused by wave-particle interactions, or other
non-MHD processes such as “Knight resistivity” [Knight, 1973].

Equation (15) is useful in determining the relative importance
of various terms, without having made a priori assumptions con-
cerning the ordering of the different collision frequencies. One
immediate consequence of (15) is that Coulomb collisions only
enter through the modified electric field E′  and therefore only
become potentially relevant when ion- and electron-neutral colli-
sions are themselves important. However, even then, the effect of
Coulomb collisions is minor. This can be seen by noting that σp
and σh are ≤ ne/B. As a consequence, the correction to j⊥  associ -
ated with the Coulomb collision term in (6) is ≤ νei/Ωe. This is a
very small correction, < 10–3 for typical ionospheric parameters.
Thus for the terrestrial ionosphere and magnetosphere (where
νei/Ωe is even smaller), the ordering of the terms in (15) is deter -
mined by the ion- and electron-neutral collision frequencies, to a
very good approximation.

Before discussing the relative importance of the various terms
in (15), we will address some remarks as to the difference
between   E⊥

′
 and    E⊥

′ .  We have already established that the
Coulomb collision term is unimportant, so the primary difference
is in the F e⊥ /ne term. In general, this is also small in comparison
to the electric field. Electric fields are typically observed to be of
order mV/m in the magnetosphere, and tens or even hundreds of
mV/m in the ionosphere. As a consequence, we would require
gradients in the energy of the electrons of order eV/km for the
force term to be comparable to the electric field. In dimensionless
units, electron pressure gradients become important when
(ρe/L)(vTe/Ue) ≈ O(1), where ρ e is the thermal electron Larmor
radius, and L is the pressure gradient scale length. Gradients of
sufficiently small scale may exist in the magnetospheric plasma
sheet, for example, especially when the plasma sheet becomes
very thin, or in the magnetopause reconnection layer, but we do
not expect such gradients to be present in the topside ionosphere.
For completeness, we will still use    E⊥

′ ,   although we could gen-
erally use   E⊥

′
  without significantly altering our analysis.

Ordering the various terms in (15) by νin/Ωi, we find

   
j⊥B 1 + νin

2 Ωi
2νin

2 Ωi
2 : νin Ωiνin Ωi

1 + rνin
2 Ωi

2νin
2 Ωi

2

1 + r2νin
2 Ωi

2νin
2 Ωi

2 neE⊥
′

   
: νin

2 Ωi
2νin

2 Ωi
2 1

1 + r2νin
2 Ωi

2νin
2 Ωi

2 neE⊥
′ : νin Ωiνin ΩiF⊥ : F⊥ .

In order, the terms correspond to the total perpendicular current
density, the Pedersen current density, the Hall current density, a
force-dependent term, and the current density due to F×B. For
vanishing ion-neutral collisions, only the last term remains on the
right-hand side of (15), and we again have the classical MHD
result, where the current is determined from F×B.

As νin/Ωi increases, corresponding to moving from higher
(magnetospheric) altitudes to lower (ionospheric) altitudes, the
other terms become more important. Assuming that   neE⊥

′  >> F⊥ ,
the Pedersen current becomes important when νin/Ωi ≈    F⊥/neE⊥

′ .
This condition marks the transition from collisionless to colli-
sional MHD, and more importantly, the transition to a plasma
where   j⊥ •E⊥

′  > 0 in the neutral frame. When ν in/Ωi >    F⊥/neE⊥
′

the dot product of (15) with   E⊥
′  gives

    j⊥• E⊥
′ = σ pE⊥

′ 2
+ smaller terms , (18)

where the σh dependent term of course drops out. In the collision-
less MHD regime there is no constraint on the sign of   j⊥ •E⊥

′ .
When ν in/Ωi ≈ 1, the Pedersen and Hall currents in (15) are

comparable, while the Pedersen current again dominates for
νin/Ωi >> 1. In this case the Pedersen current is being carried by
electrons, whereas the Pedersen current is carried by ions for
lower collision frequencies (higher altitudes). A further comment
may be in order here. In discussing the ordering of the terms we
have not made any assumptions concerning the magnitude of the
collision frequencies. For the electrons to carry the Pedersen cur-
rent requires νen /Ωe ≈ 1. While this is technically possible, ν en /Ωe
<< 1 within the Earth’s E and F region ionosphere [Kelley , 1989].

To summarize our discussion so far, we have derived an
Ohm’s law which encompasses both collisionless and collisional
MHD, in (15), without making any prior assumptions concerning
the ordering of the various terms. This Ohm’s law is not the gen-
eralized Ohm’s law of weakly collisional MHD (when only
Coulomb collisions are included), indeed for vanishing ion- and
electron-neutral collision frequencies, there is no direct electric
field dependence in (15). This is of course another way of stating
that in ideal MHD the electric field is related to the flow velocity,
while the current is related to the forces in the plasma. On includ-
ing collisions with neutrals, (7) takes over the role of the general-
ized Ohm’s law, while (15) takes the role of the momentum
equation in determining the current density. While we refer to
(15) as a collisional MHD Ohm’s law, it also reduces to the
momentum equation in the collisionless limit. Besides explicitly
containing Pedersen and Hall conductivities, (15) is useful in
showing that there is a smooth transition from the collisionless to
the collisonal regime with a clear hierarchy in the different terms
contributing to the perpendicular current.

3.  Extensions

The derivation given above made some initial assumptions.
The first of these is that flow velocities and electric fields are
specified in the frame of the neutrals. In addition, we assumed
that the plasma pressure was isotropic with respect to the mag-
netic field direction, and no other nonelectromagnetic forces
operated. With certain caveats, these assumptions can be relaxed,
and the general form of (15) remains.

3.1  Different Plasma Frames

The first condition to relax is that the formalism be derived in
the frame of the neutrals. Indeed, this constraint must be relaxed
if we are to consider the effects of neutral winds, for example.
Under a Galilean frame transformation the current density and
magnetic field are invariant, although the electric field and
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velocity are not. Thus (15) should apply regardless of the frame
of reference. If we assume that the neutrals are moving with a
velocity   Un  with respect to the new frame of reference, then
transformation of the electric field is of course given by

    E′ = E + Un × B , and the velocities transform as     U′ = U – Un ,
where unprimed variables are in the inertial frame. All the other
terms in E′  are invariant, and the Pedersen and Hall terms in (15)
are therefore also invariant, provided the electric fields and veloc-
ities are transformed from the observer frame to the local neutral
frame by the above transformations. As noted earlier, F ⊥  is
invariant under a Galilean transformation and the remaining terms
in (15) are therefore invariant under a Galilean frame trans-
formation. The current density given by (15) is indeed frame
independent.

3.2  Additional Forces

It is clear that the force terms Fi and Fe can be expanded to
include other forces, such as gravity and anisotropic pressure. The
only complication may arise from forces which couple the
parallel and perpendicular currents. Indeed, it should be noted
that the advective derivatives in (3) and (4) could also couple
parallel and perpendicular motions, corresponding to vorticity in
the flows. In the light of the ordering scheme discussed above,
however, it seems reasonable to assume that any forces due to
parallel motion are minor in the collisional regime, and the per-
pendicular current is largely unaffected in this regime. Thus (15)
can be extended to include additional force terms while preserv-
ing the ordering of terms.

3.3  Anomalous Collisions

Any anomalous collisions processes that result in the transfer
of momentum between electrons and ions could be incorporated
into the system of equations as a modification to the Coulomb
collision frequency. As such, these processes could strongly
modify the parallel current (see (17)) but would have no direct
effect on perpendicular currents, unless the effective electron
collision frequency becomes comparable to the electron gyro-
frequency. Any other anomalous collision processes which do not
conserve plasma momentum could be included in the neutral col-
lision frequencies, thereby modifying the Hall and Pedersen
conductivities. One complication of this approach, however, con-
cerns the choice of reference frame, as the rate at which momen-
tum is lost is determined by the velocity with respect to the scat-
tering center. Instead of using the frame of the neutrals, we could
reformulate the problem in the appropriate reference frame,
including additional acceleration terms in Fi and Fe to account for
the momentum gained by collisions with the moving neutrals.
The hierarchy of terms in the revised (15) would be less clear,
however, although the simplicity of the form of the equations
would be retained.

4.  Discussion

We have derived a collisional MHD formalism based on the
fluid ion and electron momentum equations including collisions.
Perhaps not surprisingly, we obtain an Ohm’s law (equation (15))
that shows a clear separation of collision-dominated and MHD-

dominated terms, although we made no a priori assumptions con-
cerning the relative ordering of the collision frequencies.

In collisionless (or weakly collisional) MHD the ion and elec-
tron momentum equations are usually recast into a generalized
Ohm’s law and a force law, with the latter being used to relate the
current density to the other (nonelectromagnetic) forces in the
plasma, since the current density enters as a Lorentz (j×B) force.
It is the j×B force term which enables the magnetic field to do
work on the plasma. The formalism presented here retains this
structure, in (7) and (10), although we have also derived a
“collisional Ohm’s law” (equation (15)) to more clearly demon-
strate the dependence of the current density on the electric field
through the Pedersen and Hall conductivities, in addition to terms
related to the nonelectromagnetic forces.

The distinction between this collisional Ohm’s law and the
generalized Ohm’s law is important. The generalized Ohm’s law
of MHD is derived from the electron momentum equation, and to
a good degree of approximation can be used to justify the state-
ment that the magnetic field is “frozen” to the electron fluid. This
is also the case here for (7), which is a modified version of the
generalized Ohm’s law that includes electron-neutral collisions.
We have already noted that in general νei and νen  << Ω e for the
Earth’s ionosphere and magnetosphere, and furthermore, F e⊥  <<

  neE⊥
′  (again making note of the exceptions to this condition in

thin current sheets within the plasma sheet, and regions where
reconnection is occurring). Thus (7) can be rewritten as

    E⊥
′ + Ue

′ × B = 0 . (19)

In other words, although we formally included electron collisions,
they are generally unimportant for the perpendicular component
of the modified generalized Ohm’s law, and the assumption of
frozen-in electrons is usually valid for both the ionosphere and
magnetosphere. Electron collisions cannot be ignored for the
parallel current density, however.

An important consequence of (19) is, of course, the equiva-
lence between electromagnetic and mechanical loads. Taking the
dot product of (19) with the current density, we find that in the
frame of the neutrals

    j⊥ •E⊥
′ = Ui⊥

′ • (j⊥× B) , (20)

since     Ue⊥
′ = Ui⊥

′ – j⊥/ne .
The left-hand side of (20) gives the rate at which electro-

magnetic energy is converted to mechanical energy (positive for
an electromagnetic load), while the right-hand side gives the rate
at which work is done by the Lorentz force, that is, the rate of
work done by the magnetic field (positive for a mechanical load).
In the ionosphere the left-hand side of (20) is always > 0 in the
frame of the neutrals (as can be seen from (18), again noting that
Fe⊥  <<   neE⊥

′  in the ionosphere), and as a consequence, the iono-
sphere is a mechanical load on the magnetospheric plasma. In
other words, the magnetosphere must “drive” the ionosphere in
this frame. Let us be clear here about what is meant by this
statement. The magnetospheric plasma must give up mechanical
energy to the magnetic field, and the magnetic field in turn does
work on the ionosphere to drive the ionospheric convection. This
does not mean that parts of the magnetosphere are not themselves
loads, but any such loads are connected to other generator regions
within the magnetosphere or magnetopause where   j•E  < 0.
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The statement that the magnetosphere is a driver of the iono-
sphere is, of course, frame dependent, since a change of frame
adds the same constant to both sides of (20), but the equivalence
given by (20) is not. Thus provided we can assume that the mag-
netic field is “frozen” to the electron fluid (a generally good
assumption as we have shown here), the ionosphere cannot simul-
taneously be an electromagnetic load and a driver of magneto-
spheric convection.

How can this conclusion be reconciled with the examples cited
in our introduction, where the ionosphere appeared to drive the
magnetosphere? Siscoe  [1982], in discussing his model, noted
that energy transfer between the region 1 and region 2 current
systems occurs by enveloping the region 2 current system in the
fringing field from an enhanced potential applied to the region 1
system. This is the clue as to how region 2 energization could
occur, since the effect of the fringing field is to transfer Poynting
flux horizontally from the region 1 system to the region 2 system.
Some of the Poynting flux not absorbed through ionospheric
Joule dissipation could then travel out along field lines to ener-
gize the partial ring current, which closes the region 2 currents
within the magnetosphere.

To make this point clear, from (20),

    j⊥ •E⊥
′ = Ui⊥

′ • (
(B • ∇∇)B

µ0
– ∇∇ Β2

2µ0
) , (21)

while Poynting’s theorem states

    j⊥ •E⊥
′ = – ∇∇•S′ – ∂

∂t ′
Β2

2µ0
, (22)

where S′  is the Poynting flux, and we have ignored the displace-
ment current in (21) and (22).

The first term on the right-hand side of (21) corresponds to
field-aligned Poynting flux. This term is positive when downward
field-aligned Poynting flux is dissipated within the ionosphere.
The second term on the right-hand side of (21) corresponds to the
horizontal transport of magnetic energy. Strictly speaking,

    Ui⊥
′ • ∇∇Β2 2µ0Β2 2µ0  is only identical to the divergence of horizontal

Poynting flux for time-stationary magnetic fields, although it is
often convenient to think of the transport of magnetic energy as
being synonymous with Poynting flux. Thus, since   j⊥ •E⊥

′  > 0 in
the ionosphere, any net upward Poynting flux within a flux tube
of necessity requires a net horizontal transport of magnetic energy
into the flux tube.

Returning to Siscoe ’s [1982] model, it is not clear why any
Poynting flux should in fact travel out of the ionosphere, and
further the assumed ionospheric potential structure sidesteps the
question of how the ionosphere is set into motion. Nevertheless,
the physical principles involved show how the ionosphere might
appear as a generator to the magnetosphere. In Siscoe’s model,
upward Poynting flux may be present when the region 2 field-
aligned currents become enveloped within the flow field of the
enhanced region 1 system. No such interconnected flow is pre sent
in the work by Song et al.  [1999, 2000]. For steady state the
ionospheric flows in their simulation form a four-cell pattern, and
while magnetic energy may be transported around the cells, there
is no transport of magnetic energy from one cell to another. In
particular, the two-cell pattern of ionospheric flows associated
with the high-latitude northward B z current system does not
encompass the lower latitude region 1 sense field-aligned cur-

rents, unlike Siscoe’s model where high-latitude region 1 driven
flows encompass the lower latitude region 2 current system.
There is hence no horizontal transport of magnetic energy into the
lower latitude current system, and no source of upward Poynting
flux to drive the magnetosphere at lower latitudes.

The discussion laid out here also supports the arguments set
forth by Lockwood and Cowley  [1999]. In particular, the iono-
sphere drives the magnetosphere only if there is upward Poynting
flux, and this requires a horizontal gradient in the magnetic
energy density, as shown by (21). At the same time the iono-
spheric incompressibility invoked by Ridley et al. [1999] to
explain the “prompt” ionospheric response implies only small
gradients in the magnetic energy density. Given the highly dissi-
pative nature of the ionosphere, it therefore appears unlikely that
there is sufficient horizontal flux transport to both overcome the
Joule dissipation and supply the necessary upward Poynting flux.
It is more likely that downward Poynting flux from the magneto-
sphere supplies the energy lost through ionospheric dissipation,
supporting the position that the magnetosphere drives the iono-
sphere. Why the ionospheric response appears to be prompt and
widespread may a consequence of induction electric fields
shielding the ionosphere from magnetospheric changes until the
required current systems have been fully established (N. C.
Maynard, personal communication, 2000).

5.  Summary and Conclusions

In summary, we have clearly demonstrated that the magnetic
field is frozen-in to the electron fluid in both the magnetosphere
and the ionosphere as a consequence of the generalized Ohm’s
law. Furthermore, the momentum equation determines the current
density. In the magnetosphere the current density is obtained by
balancing the Lorentz force with non-electromagnetic forces,
while in the ionosphere the Lorentz force balances the drag force
caused by ion-neutral collisions. Because of the frozen-in condi-
tion for the electron fluid, there is a direct equivalence between
electromagnetic and mechanical loads. This equivalence may
appear to break in circumstances where Poynting flux flows out
of a load, as if the load was an electromagnetic generator, but by
necessity there must be transport of magnetic energy into the load
from another direction such that there is a net inward Poynting
flux to balance the dissipation within the load. The statement that
upward Poynting flux is required for the ionosphere to drive the
magnetosphere casts doubt on the assertion of Ridley et al. [1999]
that the ionosphere drives the magnetosphere in response to
changes in the IMF. In addition, Song et al. [1999, 2000] do not
provide a case where the ionosphere drives the magnetosphere
since there is no horizontal transfer of Poynting flux from one
current system to the other in their simulations.
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