Outline

- Magnetosphere
- Ionosphere
- Energy Dissipation Methods within the Ionosphere
- Coupling Processes
Ionosphere

Layers of Earth’s atmosphere where solar radiation has ionized particles.
Coupling Processes

Magnetosphere-Ionosphere Coupling refers to the processes which interconnect the lower-altitude, solar-produced, ionospheric plasma with the energized plasmas and mechanisms of the high-altitude magnetosphere.

- **Solar Energy**
 - Transports and stores energy

- **Magnetosphere**
 - (transports and stores energy)
 - Regulates FACs

- **Ionosphere**
 - (dissipates energy)
FACs
(or Field-Aligned Currents)

- **Substorm Current Wedge**
 - Develop during substorms
 - Divert from Tail current

- **Region 1 Currents**
 - Magnetosphere boundary layer to Ionosphere

- **Region 2 Currents**
 - Plasma Sheet to Ionosphere
Energy Dissipation Methods within the Ionosphere

Upward FACs are carried by downward electrons
Energy Dissipation Methods within the Ionosphere

- **Joule heating**
 - Raises neutral and plasma temperatures

- **Momentum Exchange**
 - Imparts ion motion to neutral gas
 - Modifies neutral winds

- **Poynting Vector**
 - Transfers electromagnetic energy flux to ionosphere from magnetosphere
Ionospheric Changes

- Plasma Outflow
- Conductance
 - Pederson Current and Conductivity
 - Closes FACs in the ionosphere
 - Regulates the amount of current
The Magnetosphere-Ionosphere system works like a circuit, with the Magnetosphere providing the energy and the Ionosphere providing the resistance.

The Magnetosphere and Ionosphere are connected by Field Aligned Currents (FACs).
Thank You

Any Questions?

My Thanks to Xia Cai and Alex Glocer, whose presentations last year made this one possible