Magnetoseismology for the inner magnetosphere

Kazue Takahashi
(Johns Hopkins University Applied Physics Laboratory)

2006 GEM Summer Workshop
Snowmass, Co., June 26, 2006

Acknowledgements: Richard Denton, Jeff Hughes, Roger Anderson
Outline

• Introduction
• Techniques
• Examples
• Summary
Magnetospheric seismology
(Magnetoseismology)

- Extraction of information from ULF waves to probe the magnetosphere
- Two wave modes
 - Shear (Alfvén) waves
 - Compressional (fast mode) waves
- Two approaches
 - Normal mode
 - Travel time
- Long history (Alfvén waves)
 - Obayashi and Jacobs [1958]
- Improved measurement and modeling techniques make “Magnetoseismology” relevant
 - Peter Chi [2001]: Fall AGU Meeting

\[\rho = \rho_s \exp(-R/H_0) \]
Applications

- **Inferring field line mass distribution**
 - Multiple harmonics observed from spacecraft
 - Better density models from single-harmonic measurements on the ground
 - Physics of forces acting on ions
- **Getting information on heavy ions**
 - Comparison with electron density measurements
 - Global ion transport and its dependence on geomagnetic activity
- **Monitoring global mass distribution**
 - Ground magnetometer arrays
 - Plasmapause location and its dependence on the solar wind and geomagnetic activity
Comparison with other seismology

- **Sun and Solid Earth**
 - Steady background medium
 - High-Q resonances
 - Many spectral lines

- **Magnetosphere**
 - Variable background medium
 - Low-Q resonances
 - Small number of observable spectral lines

http://soi.stanford.edu/results/heliowhat.html
MHD wave equation for a cold plasma

- Shear waves
 - Alfvén mode
- Compressional waves
 - Fast mode
- Mode coupling
 - Field line resonance

\[
\rho_0 \frac{\partial \mathbf{v}}{\partial t} = \frac{1}{c} \left(\mathbf{j} \times \mathbf{B}_0 \right)
\]

\[
\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{b}}{\partial t}
\]

\[
\nabla \times \mathbf{b} = -\frac{4\pi}{c} \mathbf{j}
\]

\[
\mathbf{E} = -\frac{1}{c} \mathbf{v} \times \mathbf{B}_0
\]

Kivelson and Russell [1995]
Magnetospheric normal mode:
Standing Alfvén waves

Poloidal mode
- \(E_{\text{azimuthal}} \)
- \(B_{\text{radial}} \)

Toroidal mode
- \(E_{\text{radial}} \)
- \(B_{\text{azimuthal}} \)

Fundamental harmonic \((n = 1)\)

Second harmonic \((n = 2)\)

Sugiura and Wilson [1964]
Properties of the inner magnetosphere

- Magnetic field
 - Rigid compared to the outer magnetosphere
 - Numerical models (e.g., Tyganenko)

- Boundary conditions
 - Perfect reflection at the ionosphere a good assumption

- Mass distribution
 - Varies significantly with time and position
 - Functional form not known along field line
Theoretical models of field line distribution of plasma

- Diffusive equilibrium
 - Plasmasphere
 - $\sim R^{-1}$ near the equator

- Collisionless distribution
 - Plasmatrough
 - $\sim R^{-4}$ near the equator
 - Has been popular in the ULF waves community

\[\frac{n_e}{n_0(\text{eq})} \]

Angerami and Carpenter [1964]
Inferring field line mass distribution

- The frequency of standing waves depends on the spatial mode structure and mass distribution.
 - For example, odd mode (e.g., fundamental mode) is more sensitive to the equatorial mass than even mode (e.g., second harmonic)

- More observable harmonics means more density model parameters (inversion).
 - $N < 10$, realistically, not quite like helioseismology

- Spacecraft measurements are better suited than ground measurements.
 - Frequently yield several harmonics
Toroidal waves at geosynchronous orbit

Takahashi and Denton [2006a]
Statistics of normalized frequency

• Spacing between harmonics
 – Fundamental-second:
 • 0.29-0.32, depends on LT
 – Higher harmonics:
 • ~0.37, varies little

<table>
<thead>
<tr>
<th>MLT</th>
<th>f_1/f_3</th>
<th>f_2/f_3</th>
<th>f_3/f_3</th>
<th>f_4/f_3</th>
<th>f_5/f_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-06</td>
<td>0.25</td>
<td>0.64</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>06-09</td>
<td>0.24</td>
<td>0.63</td>
<td>1.00</td>
<td>1.36</td>
<td>-</td>
</tr>
<tr>
<td>09-12</td>
<td>0.23</td>
<td>0.63</td>
<td>1.00</td>
<td>1.36</td>
<td>1.74</td>
</tr>
<tr>
<td>12-15</td>
<td>0.22</td>
<td>0.63</td>
<td>1.00</td>
<td>1.37</td>
<td>1.73</td>
</tr>
<tr>
<td>15-18</td>
<td>0.22</td>
<td>0.64</td>
<td>1.00</td>
<td>1.37</td>
<td>1.74</td>
</tr>
</tbody>
</table>

Takahashi and Denton [2006a]
Standing Alfvén wave equation for realistic magnetospheric fields

- Developed by Singer et al. [1981].
- Solved for toroidal harmonics
- Inversion:
 - Parameters of the density models are adjusted so that the observed frequencies match the theoretical frequencies

MHD wave equation:
\[
\frac{\partial^2 (\mathbf{B}_0 \times s)}{\partial t^2} = \nabla \times \nabla \times (\mathbf{B}_0 \times s)
\]

For a given model field \(\mathbf{B}_0 \):
\[
\mu_0 \rho \frac{\partial^2 (s_{\alpha} / h_{\alpha})}{\partial t^2} = \frac{1}{h_{\alpha}^2} \left\{ h_{\alpha}^2 \mathbf{B}_0 \cdot \nabla \left[h_{\alpha} \mathbf{B}_0 \cdot \nabla (s_{\alpha} / h_{\alpha}) \right] \right\}
\]
Model for mass density variation along field line

Denton et al. [2004]

\[\log_{10} \rho = c_0 + c_2 \tau^2 + c_4 \tau^4 + c_6 \tau^6 + \ldots \]

\[\tau \equiv \int_{Eq}^{p} \frac{ds}{V_A} / \int_{Eq}^{N} \frac{ds}{V_A} \]

= 1, Foot point, North
= 0, Equator
= -1 Foot point, South
Density modeling results

- Weaker-than-expected R dependence
 - Closer to R^{-1} (diffusive) than to R^{-4} (collisionless) distribution, although most samples come from the plasmatrough
 - Not far from Polar results for plasmatrough electrons ($\sim R^{-1.7}$) [Goldstein et al., 2001]
- Equatorial maximum in the afternoon
 - Not reported for electrons
 - Equatorial concentration of heavy ions?
 - Potential well at the equator due to rotation?

Takahashi and Denton [2006a]
Ion transport within the magnetosphere

- Magnetoseismology provides information on the total ion mass density

Roberts et al. [1987]
Oxygen Torus

- Field line resonance frequency depends on the total mass density
- Plasmapause location depends on particle species
Estimating average ion mass: CRRES results

\[\rho = n_e m_e + \sum_i n_im_i + n_e m_e \]
\[\equiv \sum_i n_im_i \]
\[\equiv n_e M \]

- \(\rho \): Mass density estimated from toroidal frequency, assuming \(R^{-0.5} \) density variation along field line
- \(n_e \): Electron density determined from plasma wave spectra
- \(M \): Average ion mass

Takahashi et al., [2006b]
Inferred average ion mass
Average ion mass:
Plasmasphere and plasmatrough

- M depends on electron density:
 - High (> 2 amu) when n_e is low (plasmatrough)
 - Low (< 2 amu) when n_e is high (plasmasphere)

- If [H+, O+] plasma
 - 13% O+ in the plasmatrough

Takahashi et al. [2006b]
Cold ions in the plasmasheet: GEOTAIL observations

Seki et al. [2003] Hirahara et al. [2004]
Average ion mass:
Dependence on geomagnetic activity

<table>
<thead>
<tr>
<th>Dst (nT)</th>
<th>M (amu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.3</td>
</tr>
<tr>
<td>-20</td>
<td>2.6</td>
</tr>
<tr>
<td>-40</td>
<td>3.3</td>
</tr>
<tr>
<td>-60</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Heavy ions

• Present both inside and outside the plasmasphere
• Increases with geomagnetic activity (D_{st})
• Consistent with GEOTAIL studies of the plasmasheet and dayside outer magnetosphere
• Cold ion transport processes yet to be identified
Cross phase technique: How it works

• Based on the concept of field line resonance
• Uses latitudinal pairs separated by ~100 km
• Cross phase shows a peak at the resonance frequency of the field line at the midpoint of the stations.
 – Clearer signature than amplitude ratio or spectral peak in the single-station power spectra

Waters et al. [1991]
Cross phase technique:
Tracking the temporal variation of density

2001 April 18 (Day 108) 1531 UT

IMAGE EUV plasmapause:
courtesy of J. Goldstein
FLRs are always present on the dayside.

With dense latitudinal ground magnetometer arrays we can monitor the density structure near the plasmapause as a function of time.

[Menk al., 2004]
Short-time scale (1 hour) density variation

- Possible causes
 - Enhanced convection electric field
 - $\textbf{E} \times \textbf{B}$ drift
 - Redistribution of O^+ ions near the plasmapause

[Menk et al., 2004]
Solar cycle variation

- Mass density variation at $L \sim 7$
 - Changes by a factor of ~ 10
 - Comparable to changes at the topside ionosphere

[Lean, 1997]
[Takahashi et al., 2002]
Fast mode waves: cavity mode resonance

- Pi2 pulsations (nightside)
- Si/Sc-associated pulsations (dayside)
- Strongly damped
- Boundaries
 - Magnetopause
 - Plasmapause

Denton et al. [2002]
Low-latitude Pi2: plasmaspheric normal mode

Takahashi et al. [2003]
Pi2 frequency: Dependence on Lpp

\[f_{Pi2} = \frac{V_A}{2R_E (L_{pp} - 1)} \]

Takahashi et al. [2003]
Pi2 frequency: Dependence on local time

\[f_{\text{dusk}} < f_{\text{midnight}} \sim f_{\text{dawn}} \]

Takahashi and Liou [2004]
Fast mode/shear mode waves: travel time seismology

[Chi et al., 2005]
Travel time seismology

Density model:
Power-law variation with L with 5 free parameters

$$t_{Tamao} = \int_{l_1} ds \frac{ds}{v_f(r)} + \int_{l_2} ds \frac{ds}{v_A(r)}$$

$$\chi^2 = \sum_i \left(\frac{t_{obs,i} - t_0 - t_{Tamao,i}}{\sigma_i} \right)^2$$

[Chi et al., 2005]
Summary

• Magnetospheric seismology is a unique technique for probing the magnetosphere
 – Spatial and temporal variation of mass distribution
 – Total mass density (heavy ion contribution to the magnetospheric plasma)
• Various approaches
 – Spacecraft and ground observations
 – Fast mode and shear mode
 – Normal mode and travel time
• Recent results
 – Storm time ion transport
 – Plasmapause dynamics
• Future directions
 – More magnetometers on the ground
 – Improvement in magnetic field model and inversion techniques
References

Singer, H. J., D. J. Southwood, R. J. Walker, and M. G. Kivelson (1981), Alfvén wave resonances in a realistic magnetospheric magnetic field geometry, *J. Geophys. Res.*, 86(A6), 4589–4596.

