Take home messages

- Two types of gullies identified on Vesta: curvilinear and linear
- Curvilinear gullies formed by transient flow of liquid water
- Sourced in subsurface ice-bearing deposits
- First morphological evidence to suggest that Vesta is not as dry as previously thought
2 types of gullies identified on Vesta

- Two types of gullies: different morphologies & network geometries
- 48 craters containing linear type gullies
- 11 craters containing curvilinear type gullies
- Gullies in craters that are relatively young, e.g. Marcia ~60-150 Ma (Williams et al. 2013)
Linear gullies example: Fonteia crater
Linear gullies in Fonteia: detailed map

- Originate in alcoves below spurs
- Linear, straight channels
- Parallel channels
- Rarely intersect
- Low length to width ratio
- Sometimes end in lobate deposits
- Bounded by levees
Analogous to lunar gullies

Kumar et al. (2013)

Fan

Channel

Alcove

Direction of flow

0 50 100 Meters

0 0.5 1 Kilometers
Curvilinear gullies example: Cornelia crater

Note pitted terrain
Curvilinear gullies in Cornelia: detailed map

Legend
- Talus
- Slumped material
- Pitted terrain
- Lobate deposits

Curvilinear gully
Curvilinear gully feeding lobate deposits

0 1 2 3 4 km

N
Curvilinear gullies in Cornelia: detailed map

- Originate below cliff base/ V-shaped alcoves
- Curvilinear, sinuous channels
- Dendritic to subparallel networks
- Frequently intersect
- High length to width ratio
- Some end in superposing lobate deposits
Analogous to terrestrial and martian gullies

Malin & Edgett (2000)
Linear & curvilinear gullies have different morphologies.

Length to width ratio of gullies in Vestan craters

<table>
<thead>
<tr>
<th>Crater</th>
<th>Arruntia</th>
<th>Cornelia</th>
<th>Fabia</th>
<th>Rubria</th>
<th>Antonia</th>
<th>Canuleia</th>
<th>Fonteia</th>
<th>Severina</th>
<th>Sextilia</th>
<th>40S30E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Linear gullies</td>
<td></td>
</tr>
<tr>
<td>Curvilinear gullies</td>
<td></td>
</tr>
</tbody>
</table>
• Impact melt has been ruled out for both gully types

• Morphologies & network geometries of linear gullies consistent with dry granular flow

• Morphologies & network geometries of curvilinear gullies resemble those formed by flow of liquid water
Evidence for volatiles & water on Vesta

- Pitted terrain: formed by impact-induced degassing of volatile material (Denevi et al. 2012)
 - associated with curvilinear gullies

NASA/JPL-Caltech/UCLA/MPS/DFLR/IDA/JHUAPL 1 km
Evidence for volatiles & water on Vesta

- From meteorites:
 - quartz & other mineral veins => aqueous alteration
 (Treiman et al. 2004, Warren et al. 2013)
 - high OH apatites => water in magmas (Sarafian et al. 2012)
 - carbonaceous chondrite clasts (e.g. Herrin et al. 2011)

- From Dawn data:
 - dark material is carbonaceous chondrite (Reddy et al. 2012)
 - areas of OH (De Sanctis et al. 2012)
 - areas high in H (Prettyman et al. 2012)
Formation mechanism of curvilinear gullies

(a) Incoming ice-rich body

(b) Pre-existing regolith deposits

(c) Transient reservoir

(d) Transient surface water flow

Evaporation contributes to pitted terrain formation

Drained ice-bearing layer

Formation of pitted terrain

Talus and landslide deposits

Transient water released by impact-induced heating
Conclusions & implications

• Curvilinear gullies formed by transient flow of liquid water, sourced in subsurface ice-bearing deposits

• First morphological evidence to suggest that Vesta is not as dry as previously thought

• Vesta is a diverse, heterogeneous and complex mini-world with planetary-style processes

• Should not be surprised by possible presence of water on other asteroids
Thank you!

C. T. Russell¹, A. Yin¹, R. Jaumann², H. Y. McSween³, C. A. Raymond⁴, V. Reddy⁵, ⁶, L. Le Corre⁵, ⁷.

¹Department of Earth and Space Sciences, University of California, Los Angeles, California 90095-1567, USA.
²DLR, Institute of Planetary Research, Berlin, Germany.
³Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, 37996-1410, USA.
⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
⁵Max Planck Institute, Katlenburg-Lindau, Germany.
⁶University of North Dakota, Grand Forks, ND, USA.
⁷Planetary Science Institute, Tucson, AZ, USA.

We thank B.W. Denevi, K. Otto and D.P. O’Brien. We also thank the Dawn team for the development, cruise, orbital insertion and operations of the Dawn spacecraft at Vesta.
Thank you!

Dawn team at Goldstone Deep Space Network, January 2011
1. Average radius: 262 km (Russell et al. 2012)

2. Differentiated: iron core, olivine mantle & basaltic crust
 Russell et al. (2012) & Ermakov (in prep.)

4. Little impact melt is anticipated or observed (Williams et al. 2013)

5. Dark material is exogenous (carbonaceous chondrite) & bright material is endogenous (freshly exposed) (Reddy et al. 2012, McCord et al. 2012)
Linear & curvilinear gullies have different morphologies

<table>
<thead>
<tr>
<th>Curvilinear gullies</th>
<th>Linear gullies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originate below base of cliffs/ in V-shaped alcoves</td>
<td>Originate in alcoves below spurs</td>
</tr>
<tr>
<td>Curvilinear, sinuous channels</td>
<td>Linear, straight channels</td>
</tr>
<tr>
<td>Subparallel to dendritic networks</td>
<td>Parallel networks</td>
</tr>
<tr>
<td>Frequently intersect</td>
<td>Rarely intersect</td>
</tr>
<tr>
<td>High length to width ratio</td>
<td>Low length to width ratio</td>
</tr>
<tr>
<td>Sometimes end in smaller lobate deposits, covered by pitted terrain</td>
<td>Sometimes end in larger lobate deposits & bounded by levees</td>
</tr>
</tbody>
</table>
Morphologies consistent with sapping

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Typical for curvilinear gullies?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Constant channel width</td>
<td>Yes: 50±10 m</td>
</tr>
<tr>
<td>2. Dendritic network geometry</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Long main valleys & short, stubby tributaries</td>
<td>Yes</td>
</tr>
<tr>
<td>4. High tributary junction angles</td>
<td>Yes</td>
</tr>
<tr>
<td>5. Sapping below permeable layer</td>
<td>Yes</td>
</tr>
<tr>
<td>6. Plots of characteristics of sapping channels on Earth</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Groundwater/ aquifer origin has been suggested for some Martian gullies (e.g. Malin & Edgett 2000, Heldmann et al. 2007)
Forming the curvilinear gullies

- Morphologies of curvilinear gullies are consistent with groundwater sapping => probable formation mechanism

Cross section view of one side of crater:
Curvilinear gullies formed by sapping

Adapted from Luo (2000)
Formation mechanism of curvilinear gullies

- Pressure-temperature diagram for H_2O

\[\sim 145 \text{ K} \]
Formation mechanism of curvilinear gullies

- Water is stable as a gas on Vesta’s surface, however,
- Water will not all instantaneously evaporate
- Top layers will evaporate while sub-layers are protected and can flow [experiments soon!]
- Evaporation takes at least ~97 hrs
- Gullies can be carved in ≥22 minutes